{"id":1181,"date":"2012-06-07T18:41:06","date_gmt":"2012-06-07T18:41:06","guid":{"rendered":"http:\/\/eccv2012.unifi.it\/?page_id=1181"},"modified":"2012-10-11T13:50:56","modified_gmt":"2012-10-11T13:50:56","slug":"similarity-based-pattern-analysis-and-recognition","status":"publish","type":"page","link":"http:\/\/eccv2012.unifi.it\/program\/tutorials\/similarity-based-pattern-analysis-and-recognition\/","title":{"rendered":"Similarity-Based Pattern Analysis and Recognition"},"content":{"rendered":"
Organizers<\/strong>:\u00a0Edwin R. Hancock\u00a0(Univ. of York, UK)<\/em>, Vittorio Murino\u00a0(IIT, Italy)<\/em>, Marcello Pelillo\u00a0(Univ. of Venice, Italy)<\/em>, Richard Wilson\u00a0(Univ. of York, UK) Outline<\/strong>:<\/p>\n Tutorial material:\u00a0http:\/\/simbad-fp7.eu\/tutorialECCV2012.html<\/a><\/p>\n","protected":false},"excerpt":{"rendered":" Organizers:\u00a0Edwin R. Hancock\u00a0(Univ. of York, UK), Vittorio Murino\u00a0(IIT, Italy), Marcello Pelillo\u00a0(Univ. of Venice, Italy), Richard Wilson\u00a0(Univ. of York, UK) Duration: full day Abstract:\u00a0The presentation will revolve around two main themes, which basically correspond to the two fundamental questions that arise … Continue reading
\n<\/em>Duration<\/strong>: full day
\nAbstract<\/strong>:\u00a0The presentation will revolve around two main themes, which basically correspond to the two fundamental questions that arise when abandoning the realm of vectorial, feature-based representations, namely: How can one obtain suitable similarity information from data representations that are more powerful than, or simply different from, the vectorial. How can similarity information be used in order to perform learning and classification tasks ? We shall assume no pre-existing knowledge of similarity-based techniques by the audience, thereby making the tutorial self- contained and understandable by a non-expert. The tutorial will commence with a clear overview of the basics of how dissimilarity data arise, and how it can be characterized as a prerequisite to analysis. We will focus in detail on the differences between Euclidean and non-Euclidean dissimilarities, and in particular the causes of non-Euclidean artifacts,\u00a0how to test for them and when possible correct for them. With the basic definitions of dissimilarity to hand, we will move on to the topic of analysis in the dissimilarity domain, we will commence by showing how to derive dissimilarities for non- vectorial data, how to impose geometricity on such data via embedding and how to learn in the dissimilarity domain. Finally, we will illustrate how these ideas can be utilised in the computer vision domain with particular emphasis on the dissimilarity representation of shape.<\/p>\n\n
\n
\n
\n
\n